The Influence of K^{\dagger} Diffusion Potentials on the Fluorescence of a Cyanine Dye in Brush Border Membrane Vesicles

G. Burckhardt

Max-Planck-Institut für Biophysik D-6000 Frankfurt/Main, Germany (F.R.)

3,3'-diethylthiadicarbocyanine iodide, a positively charged cyanine dye is tested as a fluorescent indicator of membrane potential changes in renal brush border membrane vesicles. Changes in fluorescence observed after addition of various L-amino acids are in agreement with results obtained by mi-croelectrode measurements in intact kidneys indicating a Nacoupled electrogenic transport of these substrates. Since these results proved the dye to be a qualitative monitor of membrane potential, the relationship between membrane potential and fluorescence is investigated. Membrane potential is varied by imposition of various K⁺ concentration differences across the brush border membrane in the prescence of valinomycin. A sudden increase in extravesicular K^+ concentration ((K⁺)₀) causes a rapid increase in fluorescence (λ_{ex} = 622 nm, λ_{em} = 669 nm) with a maximum after a few seconds. During this time the intravesicular K⁺ concentration $((K^+)_i)$ is treated to be constant. With vesicles equilibrated with 0.5 mmol/1 K_2SO_4 and 74.5 mmol/1 Na_2SO_4 the maximum changes in fluorescence after a sudden inrease in $(K^+)_0$ are proportional to 1 g $(K^+)_0$ for $(K^+)_0 > 3$ mmol/1. For smaller $(K^+)_0$ deviations from linearity are observed. Whenever the vesicles are preloaded with higher K^+ concentrations fluorescence change is still proportional to 1 g $(K^+)_0$ but the slope is affected by $(K^+)_1$. Thus for the same ratio $(K^+)_0/(K^+)_1$ the fluorescence signal increases with increasing $(K^+)_1$. This is not expected when a linear relationship between fluorescence and membrane potential calculated from the Nernst equation is assumed. When vesicles preloaded with various $(K^+)_i$ are exposed to the same extravesicular K⁺ concentration, a decrease in fluorescence answer should occur with increasing $(K^+)_i$, since the ratio $(K^+)_0/(K^+)_i$ decreases. Experimental results show a decrease which is, however, not proportional to 1g (K+); as would be the membrane potential predicted by the Nernst equation. The curvilinear relationship under this condition as well as the deviations for small $\left(K^{+}\right)_{0}$ mentioned above could be due to a noticeable permeability of the membrane for Na⁺. In this case membrane potentials calculated from the Nernst equation would be overestimated. Unfortunately the actual membrane potential can not be calculated since the permeabilities for K⁺ and Na⁺ are not known. Thus at the moment it is not possible to describe properly the relationship between fluorescence and membrane potential in brush border membrane vesicles.